二次根式教学设计
作为一位兢兢业业的人民教师,时常需要用到教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么大家知道规范的教学设计是怎么写的吗?以下是小编精心整理的二次根式教学设计,欢迎阅读与收藏。
二次根式教学设计1一、教学目标
知识与技能:
1、理解二次根式的概念。
2、理解二次根式的基本性质。
过程与方法:
能运用二次根式的概念解决有关问题、
情感态度与价值观:
经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识。
二、学情分析
学生已经学习了“整式”、“平方根”、“算术平方根”等知识,已经具备了学习二次根式的知识基础和心理基础,但学生刚认识二次根式,学习将有一定难度。学生知识障碍点是二次根式的概念及运算,如果学生在此不能很好地理解和正确的认知,将对今后学习产生很大影响,所以要求学生积极探究、思考,及时加以巩固,克服学习困难,真正“学会”。
三、重点难点
1、教学重点为了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.
2、教学难点为:理解二次根式的双重非负性、
四、教学过程
活动1【导入】活动一
问题1你能用带有根号的的式子填空吗?
(1)面积为3的正方形的边长为_______,面积为S的正方形的边长为_______.
(2)一个长方形围栏,长是宽的2倍,面积为130m?,则它的宽为______m.
(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h =5t?,如果用含有h的式子表示t,则t= _____.
师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。
问题2上面得到的式子√3,√s,√h5分别表示什么意义?它们有什么共同特征?
活动2【活动】讲授
问题3你能用一个式子表示一个非负数的算术平方根吗?
师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如√a(a≥0)的式子叫做二次根式,“√ ”称为二次根号.
追问:在二次根式的概念中,为什么要强调“a≥0”?
师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.
活动3【讲授】辨析概念
例1当x是怎样的实数时,√x2在实数范围内有意义?
师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.
例2当x是怎样的实数时,√x2在实数范围内有意义?√x3呢?
师生活动:先让学生独立思考,再追问.
问题4你能比较√a与0的大小吗?
师生活动:通过分a> 0和a= 0这两种情况的讨论,比较√a与0的大小,引导学生得出√a ≥0的结论,强化学生对二次根式本身为非负数的理解,
活动4【练习】练习
练习当x是什么实数时,下列各式有意义、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
练习1完成教科书第3页的练习、
练习2当x是什么实数时,下列各式有意义、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
练习1完成教科书第3页的练习、
练习2当x是什么实数时,下列各式有意义、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
练习1完成教科书第3页的练习、
练习2当x是什么实数时,下列各式有意义、
(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、
活动5【活动】小结
小结:
1、二次根式的意义:√a(a≥0)
2、二次根式的性质:
性质1 √a2 = a(a≥0)
活动6【测试】目标检测
1、下列各式中,一定是二次根式的是()
A、√a B√3 、 C√x2+1 、 D、3√5
2、当x取什么时,二次根式√3x无意义.
3、当x取何值时,二次根式√x+3有最小值,其最小值是.
4、对于√3a1a3,小红根据被开方数是非负数,得出a的取值范围是a ≥ 13.小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出a的取值范围.
活动7【作业】布置作业
教科书习题16、1第1,3,5,7,10题.
二次根式教学设计2教学建议
知识结构:
重点难点分析:
是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简。商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握。
教学难点是与商的算术平方根的关系及应用。与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号。由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式。
教法建议:
1。 本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质。教师在此过程当中给与适当的指导,提出问题让学生有一定的探索方向。
2。 本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论法则,并运用这一法则进行简单的运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化。这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开。
3。 引导学生思考“想一想”中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程当中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维。
教学设计示例
一、教学目标
1.掌握商的算术平方根的性质,能利用性质进 ……此处隐藏5908个字……充完善;
3、师画龙点睛强调:
(1)二次根式混合运算的运算顺序跟有理数运算顺序一样,先乘方,再乘除,最后加减。
(2)二次根式混合运算与整式的运算有很多相似之处,因此可类比整式的运算进行二次根式的混合运算。
四、变式练习
(先让学生独立完成,老师做必要的板书准备后巡回指导,了解情况; 然后让有一定问题的学生汇报展示,发动学生评价完善,老师强调关键地方,总结思想方法。)
《二次根式混合运算习题课》教学设计-杨桂花
五、小结
本节课你有哪些收获?还有什么要提醒同学们注意的。(学生总结,百花齐放,老师不做限定,没说到的,老师补充。)
六、布置作业
《二次根式混合运算习题课》教学设计-杨桂花
二次根式教学设计9一、教学目标
1.掌握二次根式的混合运算.
2.掌握混合运算的应用.
3.通过二次根式的混合运算,培养学生的运算能力.
4.通过混合运算知识拓展,培养学生的探索精神
二、教学设计
小结、归纳、提高
三、重点、难点解决办法
1.教学重点:二次根式的混合运算.
2.教学难点:混合运算的应用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习小结,归纳整理,应用提高,以学生活动为主
七、教学过程
【例题】
例1 化简:
(1) ; (2) .
解:(1)
(2)
说明:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可变换相邻项的位置,如 ,结果为-1,继续运算易出现符号上的差错,而把 先变为 ,这样 则为1,继续运算可避免错误.
例2 解下列方程(组):
(1)
(2)
(3)
解:(1)
.
(2)①× ,得
③
②× ,得
④
③-④,得
把 代入①,得
解得 .
∴
是原方程组的解.
(3)由②,得
③
①× ,得
④
③-④,得
把 代入①,得
.
∴ 是原方程组的解.
例3 已知 , ,求 的值.
解: .
.
, ,
∴ .
例4 已知 , ,求 的值.
解: , .
.
(二)随堂练习
1.教材中P206中8.
2.解不等式: .
解:
∴
.
3.已知 , ,求 的值.
解:3. ,或 .
.
∴
.
4.已知 , ,求: 的值.
解 4.
.
5.已知 ,求 的值.
解 5. .
.
6.不求方根的值比较 与 的大小.
解 6.∵
∴
∴
(三)总结、扩展
根据已知条件,求一个代数的值,要注意条件或代数式的化简,有时条件和要求的代数式都需要化简,当把条件化简后,代数式的化简要朝着条件化简的结果去化简.
(四)布置作业
教材中P207B组1、3和补充作业.
补充作业:
1.已知 ,求 的值.
2.已知 , ,求 的值.
(五)板书设计
标 题
1.例题……
3.例题……
2.练习题
4.练习题
八、背景知识与课外阅读
二次根式的混和运算方法和顺序
1.方法 (1)应用二次根式乘法、除法和加减法运算法则.
(2)在实数范围内运算律仍适用.
(3)二次根式的乘法,与多项式的乘法相类似,遇运用多项式乘法公式时,也可以运用乘法公式.
2.顺序 先乘方、后乘除,最后加减,有括号的先算括号内的数.
二次根式教学设计10教学目的
1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;
2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1.把下列各根式化简,并说出化简的根据:
2.引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
3.启发学生回答:
二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?
二、讲解新课
1.总结学生回答的内容后,给出最简二次根式定义:
满足下列两个条件的二次根式叫做最简二次根式:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽的因数或因式。
最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。
2.练习:
下列各根式是否为最简二次根式,不是最简二次根式的说明原因:
3.例题:
例1 把下列各式化成最简二次根式:
例2 把下列各式化成最简二次根式:
4.总结
把二次根式化成最简二次根式的根据是什么?应用了什么方法?
当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。
当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。
此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。
三、巩固练习
1.把下列各式化成最简二次根式:
2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。